skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nizioł, Wiesława"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the image of the Hodge–Tate logarithm map (in any cohomological degree), defined by Heuer, in the case of smooth Stein varieties. Heuer, motivated by the computations for the affine space of any dimension, raised the question whether this image is always equal to the group of closed differential forms. We show that it indeed always contains such forms but the quotient can be non-trivial: it contains a slightly mysterious $$\mathbf{Z}_{p}$$-module that maps, via the Bloch–Kato exponential map, to integral classes in the pro-étale cohomology. This quotient is already non-trivial for open unit disks of dimension strictly greater than $$1$$. 
    more » « less